Es 1

$$x = -8 - \frac{3}{2}t$$

Equazioni parametriche

$$y=12+\frac{5}{4}t$$

Equazione cartesiana

ricavo il parametro t dalla prima equazione $t = -\frac{2}{3}(x+8)$

sostituisco nella seconda trovando l'equazione cartesiana della retta in forma esplicita

$$y=12+\frac{5}{4}\left(-\frac{2}{3}(x+8)\right)=-\frac{5}{6}x+\frac{16}{3}$$

La retta appartiene al fascio improprio $y = -\frac{5}{6}x + q$ (dove q è il parametro che varia e le rette

tutte parallele)

Es 2

Scelgo il valore di una ascissa xA = 2 e calcolo il corrispondente valore di ordinata

$$3*2-9 yA+17=0$$

$$yA = \frac{23}{9}$$

Scelgo un secondo valore xB = 5 e calcolo il corrispondente valore di ordinata

$$3*5-9 yB+17=0$$

$$yB = \frac{32}{9}$$

Per scrivere le equazioni parametriche mi serve : un punto (scelgo il punto A) P(2, 23/9)

$$V_x = xB - xA = 5 - 2 = 3$$

il vettore \bar{V} : questo vettore ha componenti

$$V_y = yB - ya = \frac{32}{9} - \frac{23}{9} = 1$$

$$x = 2 + 3t$$

equazioni parametriche

$$y = \frac{23}{9} + t$$

Per la risposta del fascio sono possibili due alternative

alternativa 1

La retta passa per il punto A (2, 23/9) che può essere preso per il centro di un fascio F

Le rette r1 :
$$x = 2$$
 ($x-2=0$)
r2 : $y = 23/9$ ($y - 23/9 = 0$)

si possono considerare le generatrici di F e quindi l'equazione del fascio sarà

$$\lambda(x-2) + \mu (y-\frac{23}{9}) = 0$$

alternativa 2

La retta passa per il punto B (5, 32/9) che può essere preso per il centro di un fascio F

Le rette r1:
$$x = 5$$
 ($x-5=0$)
r2: $y = 32/9$ ($y - 32/9 = 0$)

si possono considerare le generatrici di F e quindi l'equazione del fascio sarà

$$\lambda(x-5) + \mu (y-\frac{32}{9}) = 0$$

Es 3

Dal sistema {
$$3x+11 y=\frac{3}{4}$$
 $\frac{2}{5}x+7 y=-3$

ricaviamo det D = 83 / 5 det Dx = 154/4 det Dy = -93 / 10

$$x = \frac{\frac{154}{4}}{\frac{83}{5}} = \frac{385}{166}$$

$$y = \frac{\frac{-93}{10}}{\frac{83}{5}} = -\frac{93}{166}$$

il centro C ha dunque coordinate $C = \left(\frac{385}{166}; -\frac{93}{166}\right)$

Troviamo adesso le rette del fascio perpendicolari alle rette generatrici

La retta generatrice r1: $3x+11y-\frac{3}{4}=0$ ha coeff. angolare $m=-\frac{3}{11}$

La retta che cerchiamo avrà coeff. ang. = 11/3 e passerà per il centro C

Questa la sua equazione
$$y + \frac{93}{166} = \frac{11}{3} \left(x - \frac{385}{166} \right)$$

La retta generatrice r3:
$$\frac{2}{5}x+7y+3=0$$
 ha coeff. angolare $m=-\frac{2}{35}$

La retta che cerchiamo avrà coeff. ang. = 35/2 e passerà per il centro C

Questa la sua equazione
$$y + \frac{93}{166} = \frac{35}{2} \left(x + \frac{385}{166} \right)$$

Es 4

Il fascio F1 ha centro
$$C_1 = \left(-\frac{43}{26}; \frac{29}{26}\right)$$

Il Fascio F2 ha centro
$$C_2 = \left(-\frac{41}{13}, \frac{-22}{13}\right)$$

La retta comune ai due fasci passerà per entrambi i centri e quindi avrà equazione

$$\frac{y - \frac{29}{26}}{\frac{-22}{13} - \frac{29}{26}} = \frac{x + \frac{43}{26}}{\frac{-41}{13} + \frac{43}{26}}$$

Es 5

Se la retta r3 appartiene al fascio allora devono esistere una coppia numerica $(\bar{\lambda}, \bar{\mu})$ tale che valgano le tre uguaglianze sui coefficienti della x , della y e dei termini noti :

$$2\bar{\lambda} + 5\bar{\mu} = 3$$
$$-3\bar{\lambda} + \bar{\mu} = 38$$
$$-\bar{\mu} = -5$$

Ne prendo due e formo un sistema che risolvo

$$2\bar{\lambda} + 5\bar{\mu} = 3$$
 $\bar{\lambda} = -11$ soluzione $-\bar{\mu} = -5$ $\bar{\mu} = 5$

Controllo la terza uguaglianza -3 * (-11) + 5 = 38

Dunque la coppia (-11,5) corrisponde (nel fascio) alla retta r3.

Passiamo al secondo quesito

Se per rette generatrici del fascio prendiamo r1 : 2x - 3y = 0 ed r3 : 3x + 38y - 5 = 0 abbiamo una nuova equazione del fascio $\alpha(2x - 3y) + \beta(3x + 38y - 5) = 0$

$$(2\alpha+3\beta)x+(-3\alpha+38\beta)y-5\beta=0$$

Con un ragionamento simile a quello precedente abbiamo

che per la retta r2: 5x + y-1 = 0 seguono le relazioni tra i coefficienti:

$$2\alpha+3\beta=5$$

$$-3\alpha+38\beta=1$$

$$-5\beta = -1$$

$$\alpha = \frac{11}{5}$$

da cui si ricava

$$\beta = \frac{1}{5}$$