CORREZIONE FORMATIVA PER VERIFICA 4-12-2014

ESERCIZIO 1

$$\sqrt[5]{5^{3.25}}$$

risultato = 2,8466

evalf
$$(2.64^{\sqrt{2}})$$

risultato = 3,9467

$$6, 5^{3.56}$$

risultato = 6307, 8458

ESERCIZIO 2

prima equazione

$$17 \cdot \sqrt{2^{x+1}} = 34 \cdot \sqrt[3]{4^{x-3}}$$
 ----> $17 \cdot 2^{\frac{x+1}{2}} = 34 \cdot \sqrt[3]{2^{2(x-3)}}$ ----> divido per 17 da entrambe le parti ottenendo

$$\frac{x+1}{2} = 2 \cdot 2 \cdot 2^{\frac{2x-6}{3}} - 2^{\frac{x+1}{2}} = 2^{\frac{x+1}{2}} = 2^{\frac{x+1}{3}} - 2^{\frac{x+1}{2}} = 2^{\frac{x+$$

implica l'uguaglianza degli esponenti

$$\frac{x+1}{2} = \frac{2x-3}{3}$$
 questa è una equazione di primo grado con soluzione
$$solve\left(\frac{x+1}{2} = \frac{2x-3}{3}, x\right) \longrightarrow X = 9$$

seconda equazione

$$\left(\frac{1}{4}\right)^x - 4 = 3 \cdot 2^{-x} - \left(\frac{1}{2}\right)^{2x} - 4 = 3 \cdot \left(\frac{1}{2}\right)^x$$
 Poniamo $t = \left(\frac{1}{2}\right)^x$

Otteniamo l'equazione di 2° grado $t^2 - 4 = 3t$ ---> $t^2 - 3 \cdot t - 4 = 0$ le cui soluzioni sono $t_1 = -1$ e $t_2 = 4$

Ritornando alla sostituzione avremo $\left(\frac{1}{2}\right)^x = -1$ impossibile e

$$\left(\frac{1}{2}\right)^x = 4 = 2^2 = \left(2^{-1}\right)^{-2} = \left(\frac{1}{2}\right)^{-2}$$

Dalla uguaglianza $\left(\frac{1}{2}\right)^x = \left(\frac{1}{2}\right)^{-2}$ segue la soluzione **X**= **-2 terza equazione**

$$4^{\sqrt{x+2}} + 6 = 4^{2-\sqrt{x+2}} - ---> 4^{\sqrt{x+2}} + 6 = 4^{2} \cdot 4^{-\sqrt{x+2}} - ---> 4^{\sqrt{x+2}} + 6 = 4^{2} \cdot (4^{\sqrt{x+2}})^{-1}$$

$$4^{\sqrt{x+2}} + 6 = \frac{4^2}{4^{\sqrt{x+2}}}$$
 poniamo $t = 4^{\sqrt{x+2}}$

Sostituendo si ottiene un'equazione di 2° grado $t + 6 = \frac{16}{t}$ ---> $t^2 + 6t - 16 = 0$ le cui soluzioni

sono $t_1 = -8$ e $t_2 = 2$ Tornando alla sostituzione abbiamo :

$$4^{\sqrt{x+2}} = -8$$
 impossibile e $4^{\sqrt{x+2}} = 2$ $-- \rightarrow 2^{2 \cdot \sqrt{x+2}} = 2^1$ L'uguaglianza delle potenze con

stessa base implica

$$2 \cdot \sqrt{x+2} = 1 \quad -- \to \sqrt{x+2} = \frac{1}{2} \quad -- \to x+2 = \left(\frac{1}{2}\right)^2 -- \to x+2 = \frac{1}{4} \quad -\to x=-2$$
$$+ \frac{1}{4} - \to x = -\frac{7}{4}$$

Es 3 prima disequazione

$$3^{x^2-4} \le \sqrt[5]{3} \quad -- \to 3^{x^2-4} \le 3^{\frac{1}{5}} -- \to x^2-4 \le \frac{1}{5} -- \to x^2-4 - \frac{1}{5} \le 0 -- \to x^2 - \frac{21}{5} \le 0$$

Il polinomio
$$x^2 - \frac{21}{5}$$
 si annulla $x^2 - \frac{21}{5} = 0$ in $x_1 = -\sqrt{\frac{21}{5}}$ e $x_2 = \sqrt{\frac{21}{5}}$

Dalla teoria (foglio dato l'anno scorso) sappiamo che il polinomio è negativo per VALORI INTERNI

ALLE RADICI

Allora la soluzione è
$$-\sqrt{\frac{21}{5}} \le x \le \sqrt{\frac{21}{5}}$$

seconda disequazione

$$4^{2x-3} > 2^{\frac{x+4}{5}} - - - \rightarrow 2^{2 \cdot (2x-3)} > 2^{\frac{x+4}{5}} - - \rightarrow 2 \cdot (2x-3) > \frac{x+4}{5} - - \rightarrow 4x - 6$$
$$> \frac{x+4}{5} - - \rightarrow 20x - 30 > x+4 - \rightarrow 19x > 34 - \rightarrow x > \frac{34}{19}$$

terza disequazione

$$\left(\frac{2}{5}\right)^{x+3} \ge \frac{8}{125} \longrightarrow \left(\frac{2}{5}\right)^{x+3} \ge \left(\frac{2}{5}\right)^3$$
 Poiché le basi delle potenze sono minori di 1 la disequazione sugli esponenti di inverte

Quindi abbiamo $x + 3 \le 3 \longrightarrow x \le 0$

quarta disequazione

$$4^{3x+2} > 2 \longrightarrow 2^{2(3x+2)} > 2^1 \longrightarrow 2(3x+2) > 1 \longrightarrow 6x + 4 > 1 \longrightarrow 6x > -3 \longrightarrow$$

$$\rightarrow x > -\frac{3}{6} = -\frac{1}{2}$$

quinta disequazione

$$2^{x}(2^{x}-1) < 2 \longrightarrow 2^{2x}-2^{x}-2 < 0$$
 Ponendo $t=2^{x}$ otteniamo la disequazione $t^{2}-t-2 < 0$ Il Polinomio $t^{2}-t-2=0$ ha radici $t_{1}=-1$ e $t_{2}=2$ ed è negativo per valori interni alle radici

Quindi $-1 < 2^x < 2^1$ Poiché le funzioni esponenziali SONO SEMPRE POSITIVE

la disequazione si riduce ad essere $0 < 2^x < 2^1 \rightarrow 2^{-\infty} < 2^x < 2^1$ Siccome la base della potenza è maggiore di uno la stessa diseguaglianza vale per gli esponenti

Allora avremo $-\infty < x < 1$