Il sottoscritto dichiara ai sensi dell'art. 47 del D.P.R. 28/12/2000, n.445 che la seguente copia è conforme all'originale pubblicato sul periodico della Mathesis, serie VII- volume 7, Numero 2-3, luglio-dicembre 2000

DALLE EQUAZIONI DIFFERENZIALI ALLE FUNZIONI

 e^{x} , $\log x$, a^{x} , $\log_{a} x$, x^{α} .

R.Raucci¹

L. Taddeo²

Sunto

In questo breve lavoro, a partire dalle equazioni differenziali e dalla funzione potenza ad esponente intero, abbiamo definito la funzione esponenziale x 6 e, da questa, le funzioni $\log x$, a^x , $\log_a x$ e x^α . Abbiamo dimostrato le note proprietà di queste funzioni ed, infine, abbiamo mostrato come il calcolo di e^x e, quindi delle altre sopra citate, coincida con quello usuale.

1. Introduzione

L'interesse per le questioni affrontate in questo lavoro è ben noto in campo scientifico. Infatti diversi autori si sono occupati di come definire le funzioni elementari non in modo classico. A tale proposito citiamo, per

¹ Dipartimento di Scienze economiche, Università di Salerno, v. Ponte Don Melillo, 84084, Fisciano(Salerno), *praucci@diima.unisa.it*

² Liceo Scientifico "Garofano", v. Napoli n.1, 81043, Capua (Caserta), <u>luitad@tin.it</u>

esempio, Marcellini- Sbordone [3], che partono da un integrale, Cecconi- Stampacchia [1], che utilizzano, diversamente da noi, le serie di potenze, Giusti [2] che tratta le funzioni goniometriche partendo da un problema di Cauchy del secondo ordine. Un percorso alternativo per chi non gradisce l'uso del teorema di esistenza e unicità del problema di Cauchy del primo ordine è presentato nell'ultima parte di questo lavoro. In questa parte, a partire dall'equazione differenziale $y'=\frac{1}{x}$ con x>0, si dimostra, attraverso alcune proposizioni, l'esistenza e l'unicità del problema di Cauchy $\begin{cases} y'=y \\ y(0)=1 \end{cases}$. A questo punto si può definire la funzione

esponenziale e da questa tutte le altre considerate nel presente lavoro con le stesse dimostrazioni presentate nelle sezione 2 e 3. Questo procedimento ha in comune con quello proposto da Marcellini- Sbordone il fatto che nel percorso, in effetti, la funzione logaritmo precede quella esponenziale, ma si differenzia sia per le tecniche dimostrative utilizzate (abbiamo preferito indurre lo studente a confrontarsi in modo diretto con le equazioni differenziali) sia perché abbiamo evitato di dover dimostrare

la crescenza e la limitatezza della successione $\left(1+\frac{1}{n}\right)^n$, che, a nostro giudizio, "costa più di quanto offre", come accennato prima.

2. Le funzioni e^x **e** $\log x$

Consideriamo l'equazione differenziale y'=y. Sia f una soluzione (f esiste ed è definita nell'insieme dei numeri reali \Re , per la teoria delle equazioni differenziali).

Vale la seguente proposizione:

Proposizione 1

- a) Se f è positiva in un punto a, allora f è positiva in $[a,+\infty[$.
- b) Se f è negativa in un punto a, allora f è negativa in [a,+∞[.
- c) Se f è nulla in un punto a, allora f è identicamente nulla in \Re . Dimostrazione
- a) Sia $A = \{x > a : f(x) \le 0\}$. Supponiamo per assurdo che $A \ne \emptyset$ e sia $c = \inf(A)$. Notiamo che c > a, perché $f(c) \le 0$; infatti, se fosse f(c) > 0, dalla continuità di f e dal teorema della permanenza del segno, esisterebbe un intorno di c disgiunto da A, contro il fatto che $c = \inf(A)$. Per definizione di estremo inferiore, la funzione è positiva in [a,c]. Ne segue che f è strettamente crescente in [a,c]

(perché f = f') e ciò è assurdo poiché f(a)>0 e $f(c)\leq 0$. Dunque $A=\emptyset$ ed allora f è positiva in $[a,+\infty[$.

- b) Sia $A = \{x > a : f(x) \ge 0\}$. Supponiamo per assurdo che $A \ne \emptyset$ e sia $c = \inf(A)$. Da ciò avremo, sempre per la continuità di f e per il teorema della permanenza del segno, che $f(c) \ge 0$ e quindi c>a. Allora in [a,c[la funzione è negativa e, poiché f = f', essa è strettamente decrescente in [a,c]; ma ciò è assurdo poiché f(a) < 0 e $f(c) \ge 0$.
- c) Consideriamo il problema di Cauchy $\begin{cases} y' = y \\ y(a) = 0 \end{cases}$

Dalla teoria delle equazioni differenziali sappiamo che esiste ed è unica la soluzione di questo problema. Poiché la funzione identicamente nulla lo risolve, essa è l'unica soluzione. Quindi $f(x)=0 \ \forall x \in \Re$.

Proposizione 2

- a) Se esiste $a \in \Re$ tale che f(a)>0, allora f(x)>0 $\forall x \in \Re$.
- b) Se esiste $a \in \Re$ tale che f(a) < 0, allora $f(x) < 0 \quad \forall x \in \Re$. Dimostrazione
- a) Per quanto dimostrato in prop.(1) $\forall x \in [a, +\infty[$ risulta f(x) > 0. Se esistesse $x_0 \in]-\infty$,a[tale che $f(x_0) < 0$, allora, sempre per quanto

dimostrato in (1), si avrebbe $f(x)<0 \ \forall x \in [x_0,+\infty[$ e ciò contro il fatto che f(a)>0. Così è provato che $f(x)>0 \ \forall x \in \Re$.

b) Ragionando in modo analogo si ottiene $f(x)<0 \ \forall x \in \Re$.

Consideriamo adesso il problema di Cauchy (1)
$$\begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Sappiamo, per quanto detto prima, che esiste ed è unica la soluzione di questo problema e che tale soluzione è definita in \Re . Per quanto dimostrato nella prop.(2), tale soluzione è una funzione positiva in \Re , strettamente crescente e convessa.

Vale la seguente proposizione:

Proposizione 3

- a) $\lim_{x \to \infty} f(x) = 0$
- b) $\lim_{x \to +\infty} f(x) = +\infty$

- a) Poiché f è strettamente crescente in \Re allora esiste $\lim_{x \to -\infty} f(x) = h$ ed inoltre, poiché f è positiva, $0 \le h < +\infty$. Applicando il teorema di Lagrange si ha, $\forall x \in \Re$, $f(x+1) f(x) = f'(c_x)$ con $c_x \in]x$, x+1[. Dall'esistenza del $\lim_{x \to -\infty} f(x)$ si ha che $\lim_{x \to -\infty} f(x+1) = \lim_{x \to -\infty} f(x) = h$. Da ciò e dalla finitezza di h si ha che $\lim_{x \to -\infty} f'(c_x) = 0$. Poiché $f'(c_x) = f(c_x)$ e poiché da $x \to -\infty$ segue che $c_x \to -\infty$, si deduce che $\lim_{x \to -\infty} f(x) = 0$.
- b) Poiché f è strettamente crescente in \Re ne segue che esiste $\lim_{x\to +\infty} f(x) = k$ e poiché f(0)=1, allora $1 < k \le +\infty$.

Se fosse $k \neq +\infty$, sempre per il teorema di Lagrange avremmo che $f(x+1)-f(x)=f'(c_x)$ con $c_x \in]x$, x+1[e ciò implicherebbe che $\lim_{x\to +\infty} f(x)=0$, contro il fatto che k>1.

Osservazione 1

Potremmo dimostrare che $\lim_{x \to +\infty} f(x) = +\infty$ procedendo in modo diverso:

poiché f è convessa e strettamente positiva, fissato $x_0 \in \Re$ e $\forall x \in \Re$, si ha $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$ e passando al limite per $x \to +\infty$ si ha: $\lim_{x \to +\infty} f(x) \ge \lim_{x \to +\infty} [f(x_0) + f'(x_0)(x - x_0)] = +\infty.$

Osservazione 2

Notiamo che, dalla proposizione appena dimostrata, si deduce che nessuna funzione razionale risolve il problema di Cauchy (1), poiché per siffatte funzioni i limiti a più e meno infinito coincidono in valore assoluto.

Proposizione 4

- a) $\forall x,y \in \Re$ si ha f(x+y) = f(x)f(y).
- b) $\forall x,y \in \Re$ si ha $f(x y) = \frac{f(x)}{f(y)}$.

Dimostrazione

a) Fissato $y \in \Re$ e $\forall x \in \Re$, consideriamo F(x) = f(x+y) - f(x)f(y) .Notiamo che F(0) = f(y) - f(y) = 0 . Inoltre F'(x) = f'(x+y) - f'(x)f(y) = f(x+y) - f(x)f(y) = F(x) . Dunque, $\forall x \in \Re, \text{ risulta } F = F' \text{ e } F(0) = 0 \text{. Allora, per quanto dimostrato nella}$ prop.(1), $F \text{ è identicamente nulla in } \Re$ e ciò vale per ogni $y \in \Re$. Quindi $\forall x, y \in \Re \text{ si ha } f(x+y) = f(x)f(y) \text{ .}$

b)
$$1 = f(0) = f(y - y) = f[y + (-y)] = f(y)f(-y)$$
. Dunque $f(y)f(-y) = 1$ e ciò implica che, poiché $f(y) \neq 0$, $f(-y) = \frac{1}{f(y)}$. $\forall x,y \in \Re$ si ha
$$f(x - y) = f(x)f(-y) = \frac{f(x)}{f(y)}.$$

Definizione 1

Definiamo l'unica soluzione del problema (1) funzione esponenziale in base "e" e denotiamola con $f(x) = e^x$.

Detta funzione, poiché è la soluzione del problema (1), è strettamente crescente in \Re , dunque è invertibile.

Definizione 2

Definiamo inversa della funzione e^x la funzione logaritmo di x, in simboli poniamo: $f^{-1}(x) = \log x$.

Tenuto conto del legame tra una funzione e la sua inversa, si ha:

$$f: \mathfrak{R} \rightarrow]0, +\infty[\ e\ f^{\stackrel{\smile}{-1}}:]0, +\infty[\rightarrow \mathfrak{R}\ .$$

Dalla formula di derivazione delle funzioni inverse si ha:

$$D(\log x) = \frac{1}{x}.$$

Inoltre:

Infatti

Osservazione 3

Se
$$0 < a < 1$$
, allora $\log a < 0$. (1)

Infatti log a<0 \Leftrightarrow $e^{\log a} < e^0 \Leftrightarrow 0 < a < 1$.

Se
$$a>1$$
, allora $\log a>0$. (1)

Infatti log a>0 \Leftrightarrow $e^{\log a} > e^0 \Leftrightarrow$ a>1.

$$\forall x, y \in]0, +\infty[\text{ si ha } \log xy = \log x + \log y . \tag{2}$$

$$f^{-1}(xy) = f^{-1}(x) + f^{-1}(y) \iff f[f^{-1}(xy)] = f[f^{-1}(x) + f^{-1}(y)]$$
. Per la prop. (4) $f[f^{-1}(x) + f^{-1}(y)] = f[f^{-1}(x)] \cdot f[f^{-1}(y)] = xy$ e $f[f^{-1}(xy)] = xy$.

$$\forall x \in]0, +\infty[e \forall n \in N \text{ si ha: } \log x^n = n \log x.$$
 (3)

Infatti, dalla (2) e per x=y, risulta

 $\log x^2 = 2 \log x$. Procedendo per induzione si ottiene $\log x^n = n \log x$.

$$\lim_{x \to +\infty} \log x = +\infty \ e \ \lim_{x \to 0} \log x = -\infty \ . \tag{4}$$

Infatti, poiché il codominio della funzione $\log x$ è \Re e poiché essa è strettamente crescente (essendo inversa di una funzione strettamente crescente), segue che $\lim_{x\to +\infty} \log x = +\infty$ e $\lim_{x\to 0} \log x = -\infty$.

La seguente proposizione risponde alla domanda: chi è "e", cioè chi è f(1)?

Proposizione 5

$$f(1) = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n.$$

Dimostrazione

Ricordiamo che se f è una funzione continua in X, allora si ha:

a) Se
$$\lim_{x \to x_0} f(x) = h$$
, allora, $\forall x_n \to x_0$, con $x_n \neq x_0$ e $x_n \in X$, $\lim_{x \to +\infty} f(x_n) = h$.

b) Se
$$\lim_{x \to x_0} g(x) = h \in X$$
, allora $\lim_{x \to x_0} f(g(x)) = f(h)$.

Passando alla dimostrazione della proposizione si ha

$$\left(1+\frac{1}{n}\right)^n=e^{\log\left(1+\frac{1}{n}\right)^n}=e^{n\log\left(1+\frac{1}{n}\right)}=e^{\frac{\log\left(1+\frac{1}{n}\right)}{\frac{1}{n}}}. \text{ Applicando la regola di De}$$

L'Hospital al
$$\lim_{x \to +\infty} \frac{\log\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$$
 segue che $\lim_{x \to +\infty} \frac{\log\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = 1$. Dunque $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e^1 = e$.

3. Le funzioni a^x , $\log_a x e x^{\alpha}$

Seguono adesso le definizioni, a partire dalla funzione e^x , delle funzioni a^x , $\log_a x$ e di x^α e le rispettive proprietà.

Definizione 3

 $\forall x \in]0,+\infty[$ e $\forall \alpha \in \Re$, con $\alpha \neq 0$ e $\alpha \neq 1$, definiamo $x^{\alpha} = e^{\alpha \log x}$ (*i casi* $\alpha = 0$ e $\alpha = 1$ ci darebbero, rispettivamente, la funzione costante uguale ad 1 e la funzione identica).

Osservazione 4

Se $\alpha = n \in \mathbb{N}$, la funzione x^{α} ora definita coincide con la restrizione a $]0,+\infty[$ della già nota funzione potenza x^n . Difatti $e^{n\log x} = e^{\log x^n} = x^n$.

Proposizione 6

a)
$$x^{\alpha+\beta} = x^{\alpha}x^{\beta}$$
.

b)
$$x^{\alpha-\beta} = \frac{x^{\alpha}}{x^{\beta}}$$
.

c)
$$D(x^{\alpha}) = \alpha x^{\alpha-1}$$
.

a) Dalla prop.(4):
$$x^{\alpha+\beta} = e^{(\alpha+\beta)\log x} = e^{\alpha\log x + \beta\log x} = e^{\alpha\log x}e^{\beta\log x} = x^{\alpha}x^{\beta}$$
.

b) Dalla prop.(4):
$$x^{\alpha-\beta} = e^{(\alpha-\beta)\log x} = e^{\alpha\log x - \beta\log x} = \frac{e^{\alpha\log x}}{e^{\beta\log x}} = \frac{x^{\alpha}}{x^{\beta}}$$
.

c)
$$D(x^{\alpha}) = D(e^{\alpha \log x}) = (per \ la \ formula \ di \ derivazione \ delle \ funzioni$$

$$composte) = \alpha \frac{1}{x} e^{\alpha \log x} = \alpha \frac{1}{x} x^{\alpha} = (per \ la \ (b)) = \alpha x^{\alpha - 1}.$$

Proposizione 7

$$e^{\alpha x} = (e^x)^{\alpha}$$
.

Dimostrazione

Dobbiamo dimostrare che $f(\alpha x) = [f(x)]^{\alpha}$.

Consideriamo il seguente problema di Cauchy: (2) $\begin{cases} y' = cy \\ y(0) = 0 \end{cases} \text{ con } c \in \Re.$

L'unica soluzione di questo problema è, dalla teoria delle equazioni differenziali, la funzione identicamente nulla. Poniamo

$$g(x) = [f(x)]^{\alpha} - f(\alpha x)$$
 e notiamo che

$$g(0) = [f(0)]^{\alpha} - f(0) = 1^{\alpha} - 1 = 0$$
. Dunque $g(0) = 0$. Inoltre, $\forall x \in]0, +\infty[$

e
$$\forall \alpha \in \Re$$
 e per la prop.(6), $g'(x) = \alpha[f(x)]^{\alpha-1}f'(x) - \alpha f'(\alpha x) =$ (poiché $f' = f$)

$$=\alpha[f(x)]^{\alpha-1}f(x)-\alpha f(\alpha x)=\alpha[f(x)]^{\alpha}-\alpha f(\alpha x)=\alpha[(f(x))^{\alpha}-f(\alpha x)]=\\ \alpha g(x)\,. \ Dunque\ la\ funzione\ g\ risolve\ il\ problema\ (2)\ e\ da\ ciò\ segue\ che\\ essa\ \grave{e}\ la\ funzione\ identicamente\ nulla.\ Quindi\ [f(x)]^{\alpha}=f(\alpha x)\,,\ cio\grave{e}\\ e^{\alpha x}=\left(e^{x}\right)^{\alpha}.$$

Definiamo, $\forall a \in]0,+\infty[-\{1\}, a^x = e^{x \log a}]$

Proposizione 8

- a) a * è strettamente positiva.
- b) a^x è strettamente crescente se a>1, strettamente decrescente se 0 < a < 1.
- c) a x è convessa.

$$d) \lim_{x \to +\infty} a^x = \begin{cases} +\infty & \text{se } a > 1 \\ 0 & \text{se } 0 < a < 1 \end{cases} \quad e \lim_{x \to -\infty} a^x = \begin{cases} 0 & \text{se } a > 1 \\ +\infty & \text{se } 0 < a < 1 \end{cases}.$$

e)
$$\forall x, y \in]0,+\infty[$$
 e $\forall \alpha \in \Re$ si ha
$$\begin{cases} a^{x+y} = a^x a^y \\ a^{x-y} = \frac{a^x}{a^y} \end{cases} .$$
$$(a^x)^{\alpha} = a^{\alpha x}$$

Dimostrazione

- a) Segue dalla definizione.
- b) $D(a^x) = D(e^{x \log a}) = (per \ la \ formula \ di \ derivazione \ delle \ funzioni \ composte) = (\log a)e^{x \log a} = (\log a)a^x$. Dunque se $\log a > 0$ cioè se a > 1, a^x è strettamente crescente; se $\log a < 0$ cioè se 0 < a < 1, a^x è strettamente decrescente.
- c) $D^{(2)}(a^x) = D[(\log a)a^x] = (\log a)^2 a^x$. Dunque la funzione è convessa.
- d) $\lim_{x\to +\infty} a^x = \lim_{x\to +\infty} e^{x\log a}$. Da questa uguaglianza e dalla prop.(3) segue la prima parte della tesi. Applicando lo stesso ragionamento a $\lim_{x\to -\infty} a^x$ si ottiene la seconda parte della tesi.
- e) Per la prop.(4) si ottiene $a^{x+y} = e^{(x+y)\log a} = e^{x\log a}e^{y\log a} = a^x a^y$ e $a^{x-y} = e^{(x-y)\log a} = \frac{e^{x\log a}}{e^{y\log a}} = \frac{a^x}{a^y}$. Per la prop.(7) e dalla definizione di a^x si ha: $(a^x)^\alpha = (e^{x\log a})^\alpha = e^{\alpha x \log a} = a^{\alpha x}$.

Definizione 5

Dalla stretta monotonia della funzione a^x segue che essa è invertibile. Definiamo logaritmo in base "a" la funzione inversa di $\lambda(x) = a^x$; in simboli poniamo: $\lambda^{-1}(x) = \log_a x$.

Proposizione 9

- a) $\log_a xy = \log_a x + \log_a y$ $\forall x,y \in]0,+\infty[$.
- b) $\log_a \frac{x}{y} = \log_a x \log_a y \quad \forall x, y \in]0, +\infty[.$
- c) $\log_a x^{\alpha} = \alpha \log_a x \quad \forall x \in]0, +\infty[e \quad \forall \alpha \in \Re.$

Dimostrazione

- a) $\log_a xy = \log_a x + \log_a y \Leftrightarrow a^{\log_a xy} = a^{\log_a x + \log_a y}$. Ma $a^{\log_a xy} = xy$ e per la prop.(8), $a^{\log_a x + \log_a y} = a^{\log_a x} a^{\log_a y} = xy$.
- b) Ragionando in modo analogo si ottiene la (b).
- c) $\log_a x^{\alpha} = \alpha \log_a x \iff a^{\log_a x^{\alpha}} = a^{\alpha \log_a x}$. Ma $a^{\log_a x^{\alpha}} = x^{\alpha}$ e, per la prop.(8), $a^{\alpha \log_a x} = (a^{\log_a x})^{\alpha} = x^{\alpha}$.

Proposizione 10

- a) x^{α} è strettamente positiva $\forall x \in]0,+\infty[$ e $\forall \alpha \in \Re$.
- b) $(xy)^{\alpha} = x^{\alpha}y^{\alpha} \ \forall x,y \in]0,+\infty[\ e \ \forall \alpha \in \Re.$
- c) x^{α} è strettamente crescente se $\alpha\!>\!0$ e strettamente decrescente se $\alpha\!<\!0$.
- d) x^{α} è convessa se $\alpha < 0 \cup \alpha > 1$, concava se $0 < \alpha < 1$.

e)
$$\lim_{x \to +\infty} x^{\alpha} = \begin{cases} +\infty & \text{se } \alpha > 0 \\ 0 & \text{se } \alpha < 0 \end{cases}$$
 e $\lim_{x \to 0} x^{\alpha} = \begin{cases} 0 & \text{se } \alpha > 0 \\ +\infty & \text{se } \alpha < 0 \end{cases}$

- a) Segue dalla definizione.
- b) $(xy)^{\alpha} = e^{\alpha \log xy} = e^{\alpha \log x + \alpha \log y} = e^{\alpha \log x} e^{\alpha \log y} = x^{\alpha} y^{\alpha}$.
- c) Da $D(x)^{\alpha} = \alpha x^{\alpha-1}$ segue la tesi.
- d) $D^{(2)}(x^{\alpha}) = D(\alpha x^{\alpha-1}) = \alpha(\alpha-1)x^{\alpha-2}$ e quindi la tesi.

e) $\lim_{x\to +\infty} x^{\alpha} = \lim_{x\to +\infty} e^{\alpha \log x}$ e da ciò segue la tesi. Allo stesso modo si ragiona per $\lim_{x\to 0} x^{\alpha}$.

Proposizione 11

$$\forall a, b, c \in]0, +\infty[$$
 con $b \neq 1$ e $c \neq 1$, si ha $\log_b a = \frac{\log_c a}{\log_b b}$.

Dimostrazione

Posto
$$\log_b a = \alpha$$
 e $\log_c b = \beta$ si ha $b^\alpha = a$ e $c^\beta = b$. Inoltre
$$(c^\beta)^\alpha = (b)^\alpha = a \text{ ma } (c^\beta)^\alpha = c^{\beta\alpha} = a \Leftrightarrow \log_c c^{\beta\alpha} = \log_c a \text{ ma } \log_c c = 1$$
, da cui $\log_c c^{\beta\alpha} = \beta\alpha$, quindi $\beta\alpha = \log_c a$ cioè
$$(\log_c b)(\log_b a) = \log_c a \text{ da cui si ottiene la tesi.}$$

Proposizione 12

La funzione $\log_a x$ è convessa se 0 < a < 1, concava se a > 1.

Dimostrazione

Per la prop.(11)
$$\log_a x = \frac{\log x}{\log a}$$
 e quindi $D(\log_a x) = D\left(\frac{\log x}{\log a}\right) = \frac{1}{x \log a}$.

$$D^{(2)}(\log_a x) = D\left(\frac{1}{x \log a}\right) = \frac{-1}{x^2 \log a}$$
 da cui si ottiene la tesi.

4. Conclusioni

Riassumendo siamo partiti dal problema di Cauchy $\begin{cases} y'=y\\ y(0)=1 \end{cases} e \ da$ questo abbiamo definito la funzione e^x . Da questa funzione poi abbiamo definito le funzioni $\log x$, a^x , $\log_a x$ e^x . Quindi per calcolare il valore di queste funzioni basta saper calcolare i valori di e^x . Dal

procedimento che segue si stabilisce il metodo per il calcolo di e^x e si "raccorda" tale metodo con quello usuale.

Poiché si "conoscono" le potenze ad esponente intero, risulta facile

calcolare e^n e e^{-n} , tenuto conto anche del fatto che $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e^1$

e quindi la successione $\left(1+\frac{1}{n}\right)^n$ ci fornisce un valore approssimato di

"e". Vediamo come introdurre il concetto di radice di un numero reale positivo e come questo equivale al procedimento usuale.

Sia
$$x > 0$$
, $x^{\frac{m}{n}} = t \iff x^m = t^n$, infatti, per quanto dimostrato prima, $x^{\frac{m}{n}} = t \iff \left(x^{\frac{m}{n}}\right)^n = (t)^n \text{ cioè } x^{\frac{m}{n}} = t^n \iff x^m = t^n$.

Vediamo adesso come calcolare, $\forall x \in \Re$, e^x . Sia $x \in \Re$ e sia $x_n \to x$ con $x_n \in Q$ allora, per la continuità di e^x , si ha $e^x = \lim_{n \to +\infty} e^{x_n}$. Questo metodo ci fornisce un valore approssimato di e^x e, se la successione x_n è monotona crescente o decrescente, un valore approssimato rispettivamente per difetto o per eccesso. Questo metodo coincide con quello usuale, infatti in quest'ultimo si considerano gli insiemi $A = \{r \in Q : r < x\}$ e $B = \{s \in Q : s > x\}$ e quindi gli insiemi $C = \{e^r : r \in A\}$ e $D = \{e^s : s \in B\}$ e si definisce e^x come l'unico elemento di separazione tra gli insiemi contigui $C \in D$.

Percorso alternativo

Consideriamo l'equazione differenziale y' = y. Si ha:

Proposizione A

L'equazione differenziale y' = y ha soluzioni.

Consideriamo l'equazione differenziale $y'=\frac{1}{x}$ con x>0. Dalla teoria degli integrali , poiché la funzione $t(x)=\frac{1}{x}$ è continua in $]0;+\infty[$, essa ha soluzioni. Una qualsiasi soluzione si può scrivere come $y(x)=\int_1^x \frac{1}{t}dt+c$. Sia g(x) la soluzione ottenuta per c=0; osserviamo che il suo codominio è \Re . Infatti il $\lim_{x\to 0}g(x)$ esiste ed è negativo, perché g'(x) è positiva, dunque g(x) è strettamente crescente ed inoltre g(1)=0. Supponiamo, per assurdo, che esso sia $h\neq -\infty$. $\forall x>0$ consideriamo g in]x;2x[. Applicando il teorema di Lagrange si ha: g(2x)-g(x)=x $g'(x+x\theta_x)$. Passando al limite per x che tende $a+\infty$, si ottiene, per $h\neq -\infty$, che il primo membro tende a 0, mentre il secondo membro che è $\frac{x}{x(1+\theta_x)}$ non tende a 0 poiché $\theta_x\in]0;1[$. Ragionando in modo analogo si dimostra che $\lim_{x\to +\infty}g(x)=+\infty$. La funzione g(x) è invertibile, perché g'(x) è positiva . Sia $f(x)=g^{-1}(x)$ l'inversa, per la formula di derivazione delle funzioni inverse si ha:

$$f'(x) = \frac{1}{D(g(z))_{z=f(x)}} = \frac{1}{\frac{1}{f(x)}} = f(x).$$

Dunque f(x) risolve l'equazione differenziale y' = y.

Proposizione B

L'equazione differenziale $y'=cy \cos c > 0$ ha soluzioni.

Dimostrazione

Basta considerare l'equazione $y' = \frac{1}{cx}$ con x > 0 e ragionare come nella proposizione precedente.

Proposizione C

Sia f una soluzione dell'equazione $y'=cy \cos c > 0$, allora:

- a) Se f è positiva in un punto a, allora f è positiva in $[a,+\infty[$.
- b) Se f è negativa in un punto a, allora f è negativa in $[a,+\infty[$. *Dimostrazione*

Si ragiona in modo analogo a quanto fatto nella prop.1.

Proposizione D

Esiste ed è unica la soluzione del problema $\begin{cases} y' = cy \\ y(x_0) = 0 \end{cases} \text{ con } c > 0.$

Dimostrazione

La funzione identicamente nulla lo risolve, dimostriamo che tale soluzione è unica. Per la Prop.(C) una

soluzione di questo problema non può essere diversa da zero in $x_1 < x_0$. Supponiamo, per assurdo, che

esista una soluzione $y(x) = c \int_{x_0}^x y(t) dt$ del problema che in $[x_0; +\infty[$ non sia identicamente nulla. Si ha:

 $A = \{u \in [x_0; +\infty[\text{ tale che } y \equiv 0 \text{ in } [x_0; u]\} \neq \emptyset \text{ poiché } x_0 \in A \text{. Sia } x_1 = \sup A \text{, che dall'ipotesi assurda, è minore di } +\infty. \text{ Notiamo che,}$

$$\forall x \in \left[x_0; x_1 + \frac{1}{2c}\right]$$
, si ha:

$$|y(x)| \le c \int_{x_0}^x |y(t)| dt = c \int_{x_1}^x |y(t)| dt \le c \int_{x_1}^{x_1 + \frac{1}{2c}} |y(t)| dt$$
.

In $\left[x_1; x_1 + \frac{1}{2c}\right]$ la funzione y(x) non è identicamente nulla e quindi la

funzione |y(x)| possiede, in questo intervallo, un massimo M positivo.

$$\forall x \in \left[x_0; x_1 + \frac{1}{2c}\right] \text{ risulta: } \left|y(x)\right| \le c \int_{x_1}^{x_1 + \frac{1}{2c}} \left|y(t)\right| dt \le \frac{1}{2}M. \text{ Allora,}$$

passando al sup. al variare di $x \in \left[x_0; x_1 + \frac{1}{2c}\right]$, si ha $M \le \frac{1}{2}M$ e ciò è assurdo poiché M è positivo. Quindi f(x)=0 $\forall x \in \Re$.

Proposizione E

Il problema (E) $\begin{cases} y' = y \\ y(0) = 1 \end{cases}$ ha un'unica soluzione.

Dimostrazione

Sappiamo, per quanto detto prima, che esiste una soluzione di questo problema, infatti basta considerare la funzione $g(x) = \int_1^x \frac{1}{t} dt$ (vedi la prop.(A)). Tale funzione in 1 vale 0, dunque la sua inversa f(x) in 0 vale 1, cioè risolve il problema (E). Facciamo vedere che tale soluzione è unica. Infatti siano f e h due soluzioni, allora (f - h)' = f' - h' = f - h. Quindi la funzione f - h risolve il problema $\begin{cases} y' = y \\ y(0) = 0 \end{cases}$ e, per quanto dimostrato nella prop.(D), $f \equiv h$.

A questo punto possiamo definire la funzione $f(x) = e^x$ come l'unica soluzione del problema (E) e dimostrare tutte le proprietà, anche grazie alle proposizioni di questo paragrafo, già dimostrate nelle sezioni 2 e 3, senza utilizzare il teorema di esistenza e unicità del problema di Cauchy del primo ordine.

Bibliografia

- [1] Cecconi J.P., Stampacchia G.(1983), Analisi Matematica, Vol. 1, Liguori, Napoli
- [2] Giusti E.(1989), Analisi Matematica 2, Bollati Boringhieri, Torino
- [3] Marcellini P., Sbordone C.(1992), Calcolo, Liguori, Napoli